National Renewable Energy Laboratory USA Trough Initiative

Integrated Solar Combined Cycle Systems

Bruce Kelly
Nexant Inc., A Bechtel Technology & Consulting Company
San Francisco, California

Ulf Herrmann
FLABEG Solar International GmbH
Köln, Germany

Integrated Solar Combined Cycle System

Thermodynamic and Economic Benefits

- Incremental Rankine cycle efficiencies are 95 to 120 percent those of a SEGS plant, and up to 105 percent those of a combined cycle plant
- Daily steam turbine startup losses are eliminated
- Incremental Rankine cycle power plant costs are 25 to 75 percent those of a SEGS plant

Thermodynamic Benefit

- Solar conversion efficiencies are higher than conventional plants, yet Brayton and Rankine cycle conditions remain unchanged
- Thermodynamic availability is improved by reducing temperature difference in heat transfer
- Largest Rankine cycle temperature differences occur in high pressure evaporator of the heat recovery steam generator

Thermodynamic Benefit

- The most efficient use of solar energy is displacing saturated steam production
- Corollary: Sensible heat transfer has the smallest temperature differences; thus, the least efficient use of solar energy is feedwater preheating and steam superheating

Heat Transfer Diagram for Combined Cycle Plant

ISCCS with Small Solar Input

ISCCS with Large Solar Input

Inherent Limits

- If solar conversion efficiencies are to match or exceed SEGS plants, annual solar contributions are limited to 2 to 7 percent
- Annual contributions above 10 percent can be easily achieved without the use of thermal storage, but net solar-to-electric conversion efficiencies will be below 30 percent

Benefits and Limits

Part Load Rankine Cycle Efficiencies

- Declining conversion efficiency with increasing solar contribution is not due to decrease in turbine efficiency at part load
- Steam flow rates, and therefore pressures, are high during the day, and lower at night
- Throttling introduces a loss in thermodynamic availability; thus, sliding pressure operation is preferred
- Extraction feedwater heaters are not used; thus, the final feedwater temperature is independent of Rankine cycle load

Part Load Rankine Cycle Efficiencies

- Turbine efficiencies (continued)
- At night, the decay in steam flow rate is matched by a decay in steam pressure
- Volume flow rate remains almost constant; thus, the turbine blade velocity vectors remain close to design values
- Rankine cycle penalties during majority of operating hours can be very small

Main and Reheat Steam Conditions

- Variable pressure and constant temperature
- Superheater and reheater sized for solar operation
- Main and reheat steam attemperation required at night
- Constant turbine temperatures, but high consumption of feedwater

Main and Reheat Steam Conditions

- Variable pressure and variable temperature
- Superheater and reheater sized for evening operation
- Main and reheat steam temperatures decay during solar operation
- Reasonable low pressure turbine exhaust moisture maintained by reheat steam
- No feedwater demand for attemperation except following solar steam generator trip

Design Recommendations

- For 'F series' gas turbines and 3 pressure heat recovery steam generators, solar thermal inputs should be limited to 100 to 300 percent of high pressure evaporator duty
- Thermal inputs to low pressure evaporator, intermediate pressure evaporator, feedwater preheater, superheater, and reheater are thermodynamically much less efficient

Design Recommendations

- Variable pressure/variable temperature designs offer reasonable efficiencies, less complex operating procedures, reduced water consumption, and improved availability
- To maintain reasonable conversion efficiencies, solar contributions above 10 percent are best provided through the use of thermal storage